Лекция 5

22 февраля

Языки программирования (ЯП), базирующиеся на стеке вызовов

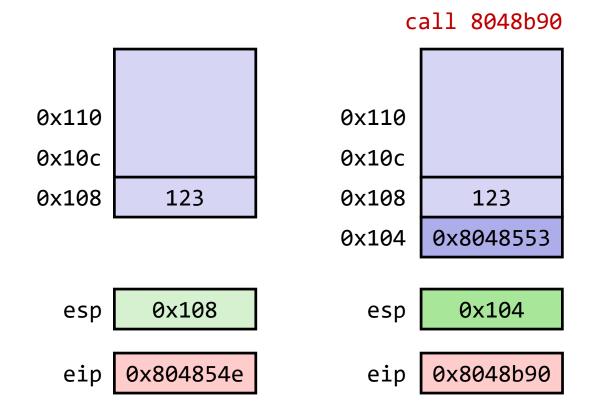
- ЯП с поддержкой рекурсии
 - C, Pascal, Java, ...
 - Код функции можно вызывать повторно ("Reentrant")
 - Одновременно могут выполняться несколько вызовов функции
 - Необходимо выделять память под сохранение состояния каждого работающего вызова
 - Аргументы
 - Локальные переменные
 - Адрес возврата

Стек

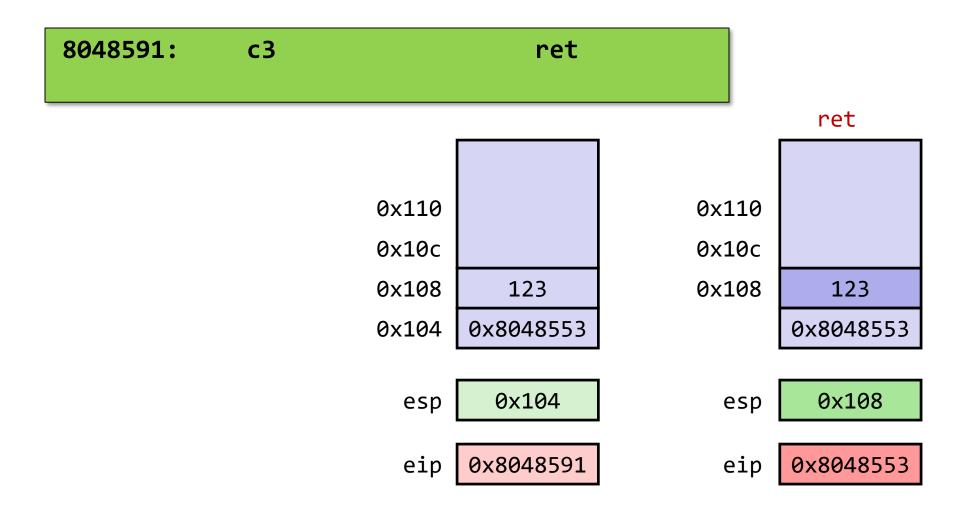
- Сохранять состояние вызова функции надо в ограниченный период времени: от момента вызова до момент выхода
- Вызываемая функция всегда завершается до вызывающей
- Стек выделяется Фреймами
 - Состояние отдельного вызова функции

Порядок вызова функции

- Аппаратный стек используется для вызова функций и возврата из них
- Вызов функции: call label
 - На стек помещается адрес возврата
 - Выполняется прыжок на метку *label*
- Адрес возврата:
 - Адрес инструкции непосредственно расположенной за инструкцией call

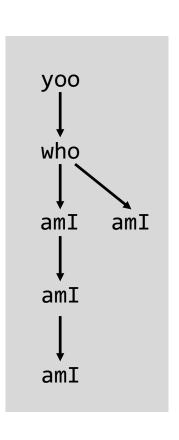

```
804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50 push eax
```

- Адрес возврата = 0x8048553
- Возврат из функции: **ret**
 - Выгрузка адреса из стека
 - Прыжок на этот адрес


Вызов функции

804854e: e8 3d 06 00 00 call 8048b90 <main>

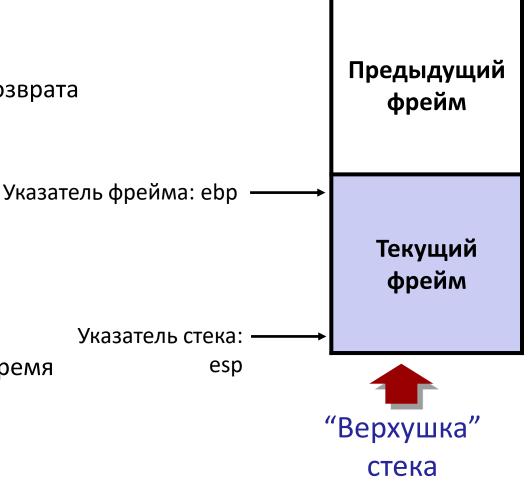
8048553: 50 push eax

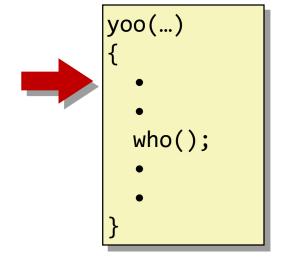


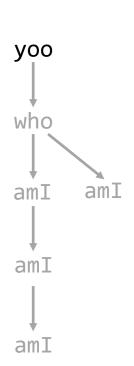
Выход из функции

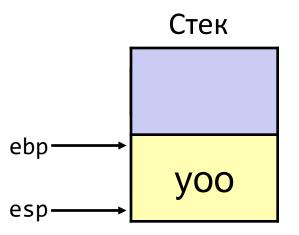
Пример цепочки вызовов

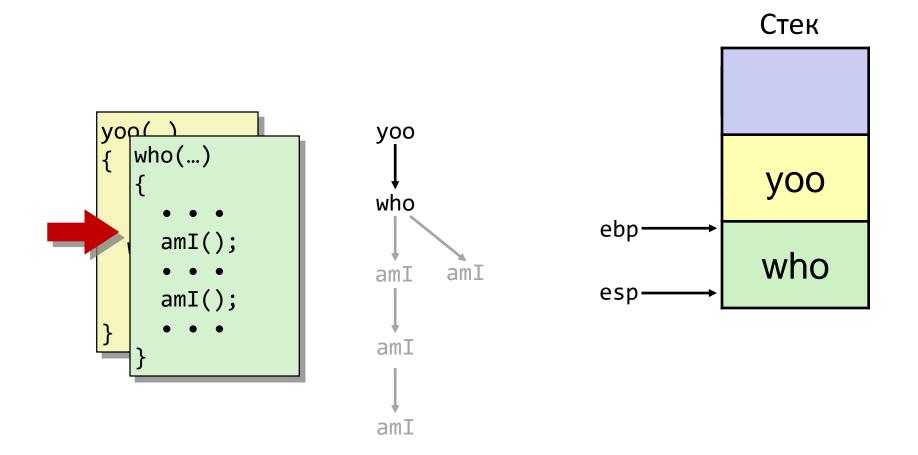
```
yoo(...)
                  who(...)
  who();
                    amI();
                                     amI(...)
                    amI();
                                       amI();
```

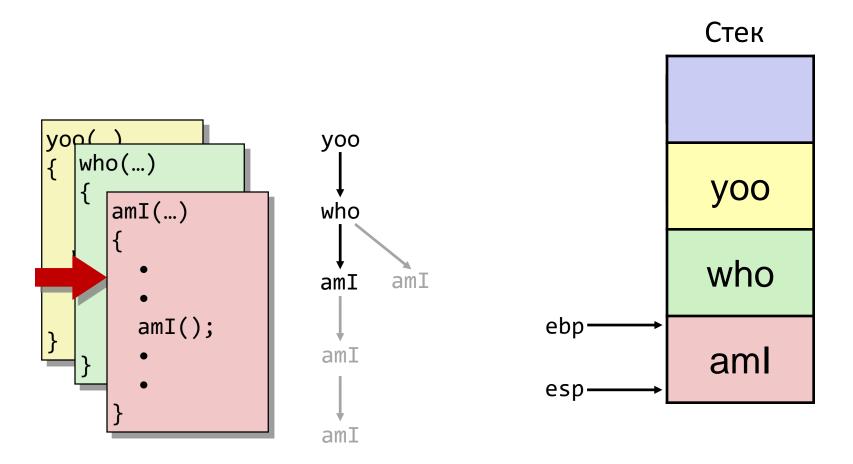


Функция amI() рекурсивная

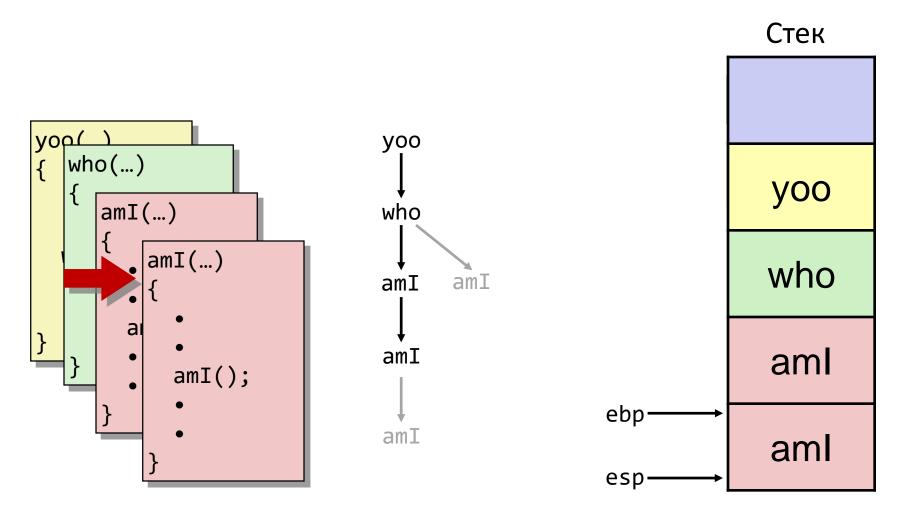

Стек фреймов

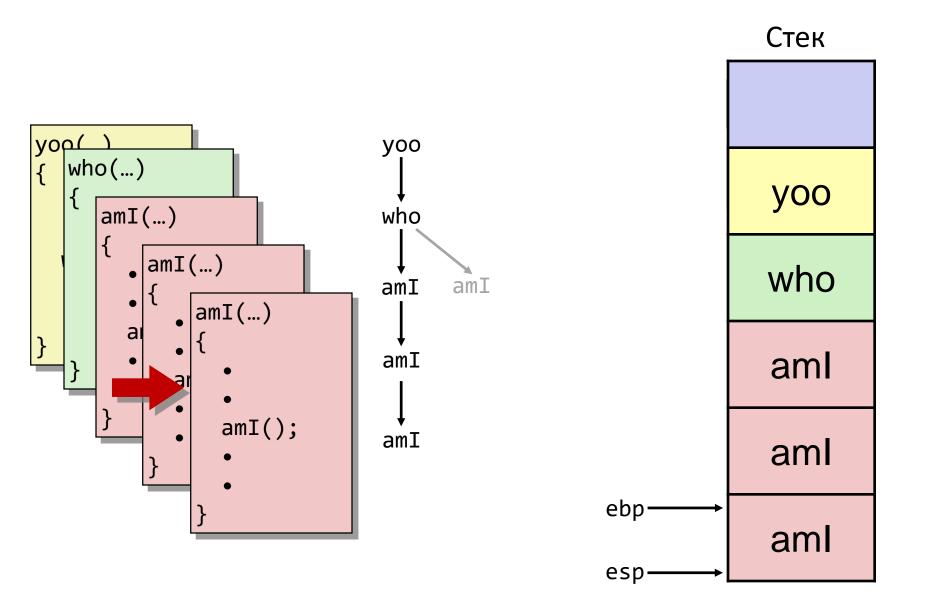

- Во фрейме размещаются
 - Локальные переменные
 - Данные, необходимые для возврата из функции
 - Временные переменные

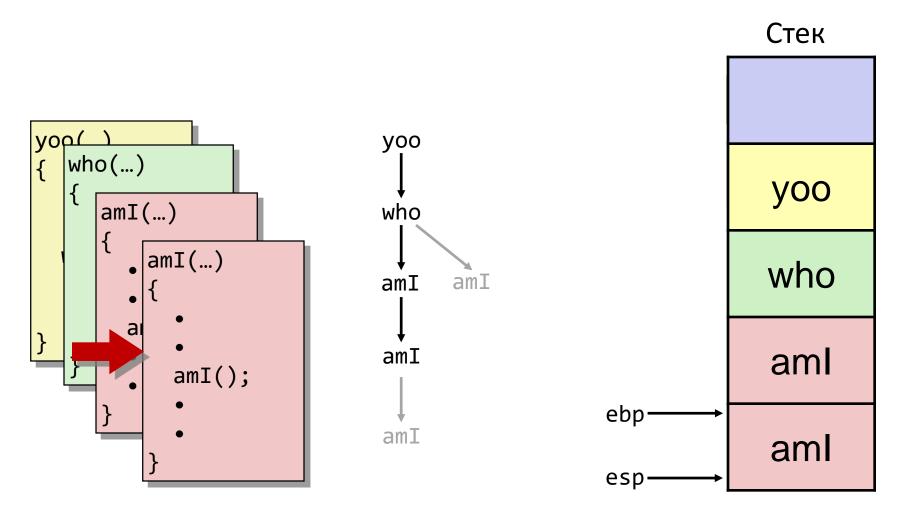

• Управление фреймами


- Пространство выделятся во время входа в функцию
 - «пролог» функции
- Освобождается на выходе
 - «эпилог» функции

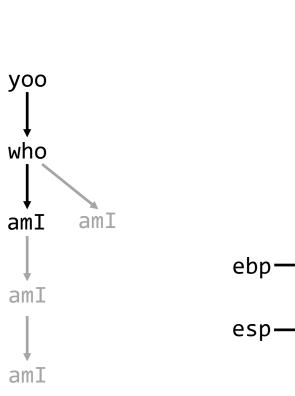


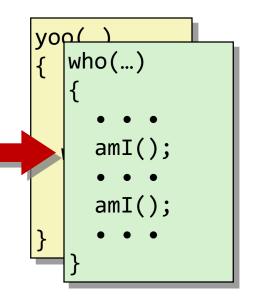


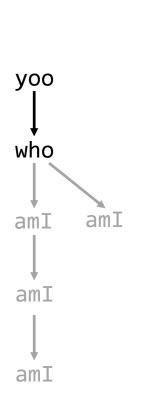


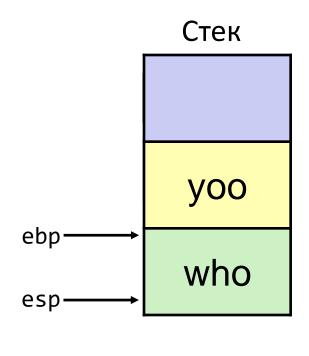


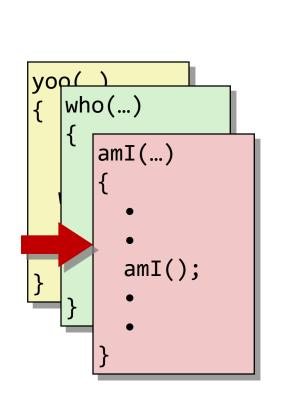


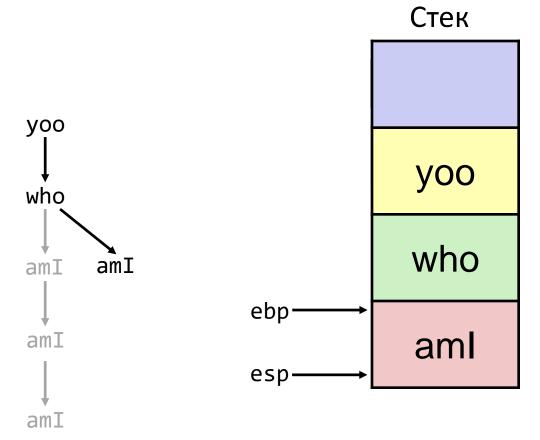

Стек

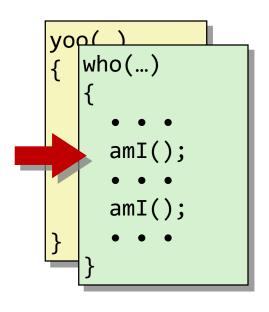

yoo

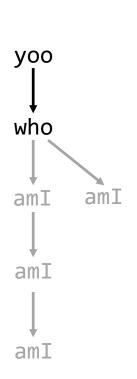

who

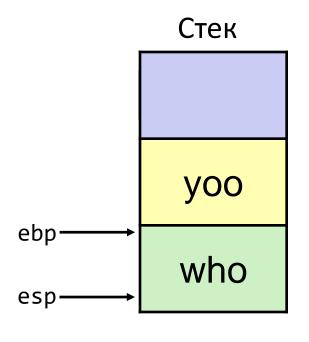

aml

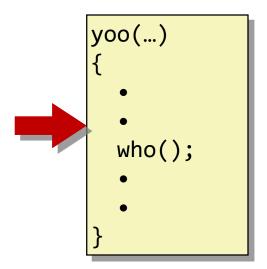


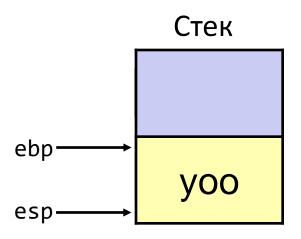


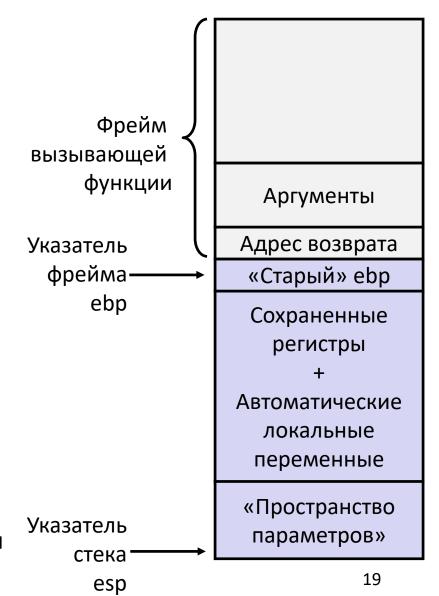






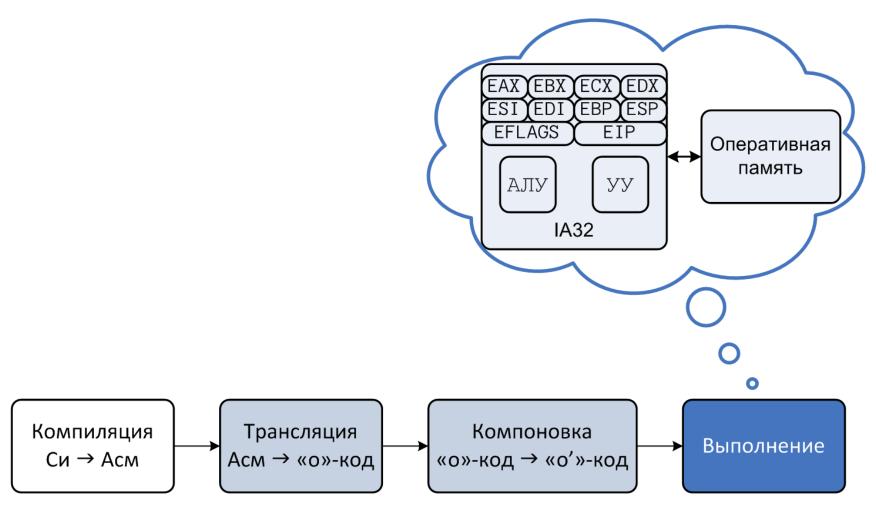






Организация фрейма в IA-32/Linux

- Текущий фрейм (от "верхушки" ко «дну»)
 - "Пространство параметров":
 фактические параметры вызываемых функций
 - Локальные переменные
 - Сохраненные регистры
 - Прежнее значение указателя фрейма
- Фрейм вызывающей функции
 - Адрес возврата
 - Помещается на стек инструкцией call
 - Значения фактических аргументов для текущего вызова




```
int main() {
    int a = 1, b = 2, c;
    c = sum(a, b);
    return 0;
}

int sum(int x, int y) {
    int t = x + y;
    return t;
}
```

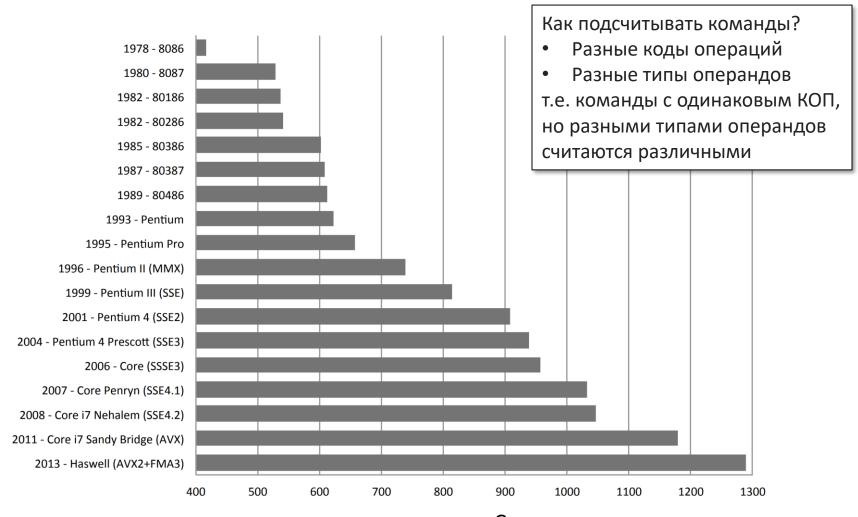
```
%include 'io.inc'
section .text
global CMAIN
CMAIN:
. . .
       dword [ebp-16], 0x1; (1)
  mov
        dword [ebp-12], 0x2; (2)
  mov
  mov eax, dword [ebp-12] ; (3)
  mov dword [esp+4], eax; (4)
  mov eax, dword [ebp-16] ; (5)
  mov dword [esp], eax ; (6)
  call
                          ; (7)
        sum
  mov dword [ebp-8], eax; (8)
global sum
sum:
  push ebp
                          ; (9)
  mov ebp, esp
                    ; (10)
  sub esp, 0x10 ; (11)
  mov edx, dword [ebp+12] ; (12)
  mov eax, dword [ebp+8] ; (13)
  add eax, edx ; (14)
  mov dword [ebp-4], eax ; (15)
  mov eax, dword [ebp-4] ; (16)
  mov
      esp, ebp
                          ; (17)
        ebp
                          ; (18)
  pop
                          ; (19)
  ret
```

Промежуточные итоги

Дальнейший материал

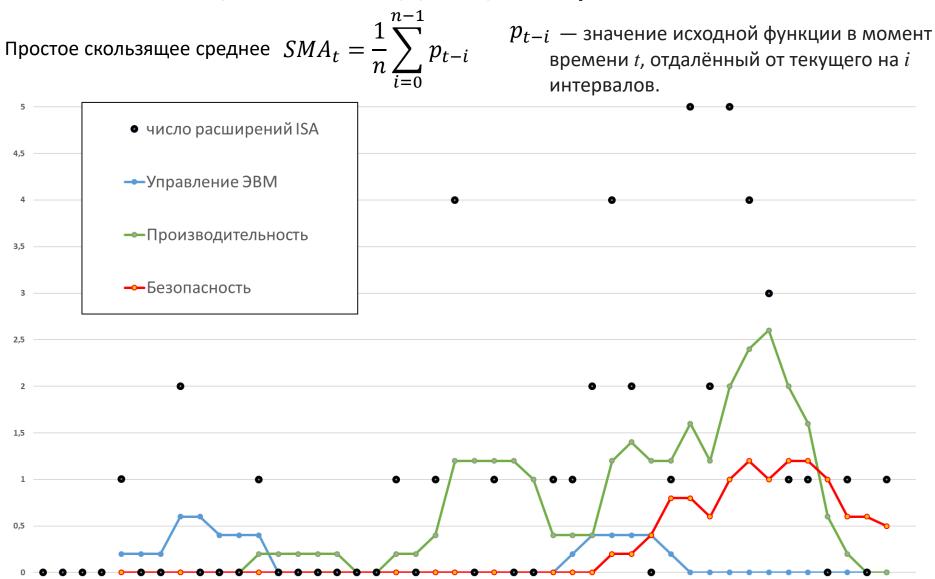
- Взаимосвязь языка Си, языка ассемблера и особенностей архитектуры IA32
 - Операции над целыми числами и битовыми векторами
 - «быстрая» арифметика и обработка 64 разрядных чисел
 - побитовые операции, сдвиги, вращения
 - реализация управляющих конструкций языка Си
 - адресная арифметика
 - массивы
 - структуры и объединения, выравнивание данных
 - соглашение вызова
 - cdecl, stdcall, fastcall
 - выравнивание стека
 - ускорение вызова функций
 - числа с плавающей точкой

– ...


Группы команд

- Общего назначения
- x87 FPU
- MMX
- SSE
- IA-32e
 команды
 64-разрядного режима работы
- Системные команды
- Аппаратная виртуализация
- ...

Цветом выделены группы команд, которые рассматриваются в курсе, на лекциях и семинарах.


- Пересылка данных
- Команды двоичной арифметики
- Команды двоичнодесятичной арифметики
- Логические команды
- Сдвиги и вращения
- Битовые и байтовые команды
- Передача управления
- Строковые
- Ввод/Вывод
- Явное управление EFLAGS
- Вспомогательные

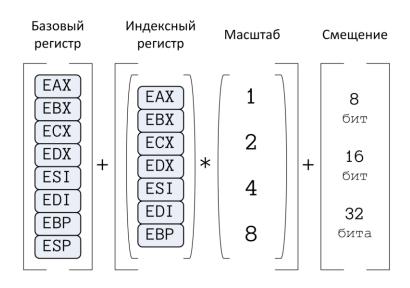
Рост числа команд в архитектуре х86

					© 2023 MГУ/	BMK/
Год	Расширение	µархитектура	Описание			
<u>1978</u>	Real	8086	Исходный набор команд реального режима			
<u>1982</u>	Protected v1	80286	Первая версия защищенного режима	_		
1985	Protected v2	80386	Защищенный режим	Справочная и	нформация	
<u>1985</u>	SMM	80386	Режим управления системой (System Management Mode)	Использовали	ісь материалы с сайт	га
<u> 1989</u>	FPU	<u>80486</u>	14		ichip.org/wiki/WikiCh	
<u>1996</u>	MMX	<u>P5</u>	Первая реализация SIMD-инструкций	Tittps.//cm.wiki	iemp.org/ wiki/ wikici	p
<u>1998</u>	3DNow!	<u>K6-2</u>	SIMD-инструкции для работы с FP одинарной точности			
<u>1999</u>	SSE	<u>P5</u>	SIMD-инструкции для работы с FP одинарной точности			
<u>1999</u>	E3DNow!	<u>K7</u>	Расширение 3DNow! (новые DSP-инструкции + несколько MMX-инструкций)			
<u>1999</u>	Professional 3DNow!		Маркетинговое название от AMD для E3DNow! + SSE			
<u>1999</u>	EMMX	<u>P6</u>	Расширение ММХ-инструкций			
<u>2001</u>	SSE2	<u>P6</u>	Попытка заменить ММХ-инструкции для более широких ХММ регистров			
2004	SSE3	<u>Core</u>	Третье расширение потоковых SIMD-инструкций			
2005	VT-x	Pentium 4	Аппаратная виртуализация (Intel)			
2006	AMD-V	Athlon 64	Аппаратная виртуализация (AMD)			
<u>2006</u>	SSSE3	<u>Core</u>	Дополнение к расширению SSE3, инструкции для работы с запакованными це	лыми		
2007	SSE4.1	<u>Penryn</u>	Расширение 4.1 для потоковых SIMD-инструкций			
<u>2007</u>	SSE4a	<u>K10</u>	4 SIMD-инструкции, не относящиеся 4.1 или 4.2			
2007	ABM	<u>K10</u>	Манипуляции отдельными битами			
2008	SSE4.2	<u>Nehalem</u>	Расширение 4.2 для потоковых SIMD-инструкций			
<u>2007</u>	SSE5		Предложено AMD в 2007, но никогда не было реализовано			
2008	SSE4		Расширение 4 потоковых SIMD-инструкций, маркетинговое название для SSE4	l.1 + SSE4.2		
<u>2010</u>	CLMUL	<u>Westmere</u>	Умножение без переноса для блочного шифрования			
<u>2011</u>	AVX	Sandy Bridge	Операции над 256-разрядными целыми (Advanced Vector Extensions)			
2012	F16C	Ivy Bridge	Приведение типов FP одинарной и половинной точности			
<u>2011</u>	XOP	<u>Bulldozer</u>	Операции над векторами			
<u>2011</u>	FMA4	<u>Bulldozer</u>	Умножение-сложение с однократным округлением над 4 операндами			
<u>2011</u>	LWP	<u>Bulldozer</u>	Легковесное профилирование			
<u>2011</u>	SMX	<u>Nehalem</u>	Контроль работы приложений			
<u>2011</u>	AES	Westmere	Аппаратная реализация шифрования AES			
<u>2012</u>	TBM	<u>Piledriver</u>	Манипуляции отдельными битами			
<u>2013</u>	BMI1	<u>Jaguar</u>	Манипуляции отдельными битами			
<u>2013</u>	BMI2	<u>Haswell</u>	Манипуляции отдельными битами			
<u>2013</u>	FMA3	<u>Haswell</u>	Умножение-сложение с однократным округлением над 3 операндами			
<u>2013</u>	TSX	Haswell	Транзакционная память			
<u>2013</u>	AVX2	<u>Haswell</u>	Расширение AVX			
<u>2014</u>	ADX	<u>Broadwell</u>	Сложение целых произвольной точности			
<u>2014</u>	RdRand	<u>Broadwell</u>	Генерация случайных чисел			
<u>2014</u>	PREFETCH	<u>Broadwell</u>	Упреждающая загрузка в кэш (ранее часть 3DNow!)			
<u>2015</u>	AVX-512	<u>Airmont</u>	Операции над 512-разрядными регистрами			
<u>2015</u>	MPX	<u>Skylake</u>	Защита памяти			
<u>2015</u>	SGX	<u>Skylake</u>	Управление анклавами - области памяти, которые шифруются/расшифровыва	аются на лету		
<u>2016</u>	SHA	<u>Goldmont</u>	Вычисление криптографического хэша SHA		25	
<u>2017</u>	SME	Zen	Шифрование/расшифровывание страниц памяти на лету		25	
<u>2019</u>	TME	Ice Lake	Тотальное шифрование памяти			
2021	CET	Tiger Lake	Контроль целостности потока управления			

Как оценить тенденции в развитии ISA?

«Основные» команды IA-32

Пересылка данных	Двоичная У арифметика	Передача управления	Логические	Сдвиги и вращения	Битовые и байтовые	Прочее
• MOV	• ADD	• JMP	• AND	• SAR	• SETcc	• LEA
• XCHG	• ADC	• J <i>cc</i>	• OR	• SHR	• TEST	• NOP
• BSWAP	• SUB	• CALL	• XOR	• SAL,		
• MOVSX	• SBB	• RET	• NOT	SHL		
• MOVZX	• NEG			• ROR		
• CDQ	• IMUL			• ROL		
• CWD	• MUL			• RCR		
• CBW	• IDIV					
• PUSH	• DIV			• RCL		
• POP	• INC	Красным выделены не		е упоминавц	иеся ранее	на
• CMOVCC • DEC		лекциях ассемблерные инструкции.				


представлены в полном составе.

• CMP

Команды двоичной арифметики и логические команды

Общий вид адресного кода при обращении к памяти

- LEA
 - r32, m

Исполнительный адрес = База + (Масштаб * Индекс) + Смещение

Виды (способы) косвенной адресации	Выражение	Пример
Относительная	База + Смещение	[ebp-16]
Базово-индексная	База + Индекс	[eax+ecx]
Базово-индексная с масштабом	База + Масштаб * Индекс	[eax+4*ecx]
Базово-индексная с масштабом и смещением	База + Масштаб * Индекс + Смещение	[eax+4*ecx+10]

Пример Реализация стрелки Пирса

```
unsigned pierce_arrow(unsigned a, unsigned b) {
   int t = ~(a | b);
   return t;
}
```

```
section .text
global pierce_arrow
pierce_arrow:
   push   ebp
   mov   ebp, esp
   mov   eax, dword [ebp+12]; (1)
   or   eax, dword [ebp+8]; (2)
   not   eax   ; (3)
   pop   ebp
   ret
```