М. А. Соловьёв 9 октября 2013, ВМК МГУ

АРХИТЕКТУРА Х86-64

Историческая справка

- 2000: оригинальная спецификация от AMD.
- 2003: первая реализация AMD:
 Opteron.
- 2004: первая реализация Intel: Xeon Nocona.

Поддержка в процессорах

- AMD
 - Athlon 64
 - Athlon II
 - Opteron
 - Turion 64
 - Sempron
 - Phenom
 - Phenom II
 - FX
 - Fusion

Поддержка в процессорах

- Intel
 - NetBurst
 - Xeon, Celeron, Pentium 4, Pentium D, Pentium Extreme Edition
 - Core
 - Xeon, Core 2, Pentium Dual-Core, Celeron
 - Atom
 - 200, 300, N4xx, N5xx, Dxxx
 - Nehalem
 - Core i3, Core i5, Core i7
 - Sandy Bridge
 - Core i3, Core i5, Core i7

Поддержка в процессорах

- VIA
 - Nano

Название

- Всё семейство реализаций:
 - x86-64;
 - x86_64;
 - x64.
- Реализация AMD:
 - AMD64;
 - AA64.
- Реализация Intel:
 - Intel 64;
 - IA-32e;
 - EM64T.

Название

 IA-64 — это Intel Itanium, другая 64разрядная процессорная архитектура от Intel.

Регистры общего назначения

Расширение 32-разрядных GPR до 64 разрядов:

```
RAX > EAX > AX > AL (AH);
RCX > ECX > CX > CL (CH);
RDX > EDX > DX > DL (DH);
RBX > EBX > BX > BL (BH);
RSP > ESP > SP > SPL;
RBP > EBP > BP > BPL;
RSI > ESI > SI > SIL;
RDI > EDI > DI > DIL.
```

Регистры общего назначения

Дополнительные 8 GPR:

```
• R8 > R8D > R8W > R8B;
• R9 > R9D > R9W > R9B;
• R10 > R10D > R10W > R10B;
• R11 > R11D > R11W > R11B;
• R12 > R12D > R12W > R12B;
• R13 > R13D > R13W > R13B;
• R14 > R14D > R14W > R14B;
• R15 > R15D > R15W > R15B.
```

Специальные регистры

- Регистр счётчика инструкций:
 - RIP > EIP > IP.
- Регистр флагов:
 - RFLAGS > EFLAGS > FLAGS.
- Управляющие регистры расширены до 64 разрядов:
 - CRn, DRn, GDTR, LDTR, IDTR, TR, MSR_nnnn_nnnn.

- O ADD RAX, QWORD [RSI + 8 * R8]
- ADD EAX, DWORD [ESI + 4 * R8W]
- ⊙ JMP RDI
- JMP QWORD [RDI]

 При выработке 32-разрядного значения в GPR происходит неявное расширение нулём до 64 разрядов.

- RAX = 0002 0001 8000 2201;
 RBX = 0002 0002 0123 3301.
- ADD EBX, EAX
 → RBX = 0000 0000 8123 5502.

- Команды пересылки
 - Пересылка
 - MOV, MOVSX(D), MOVZX, MOVD, MOVNTI
 - Условная пересылка
 - CMOVcc
 - Операции со стеком
 - POP, POPA(D), PUSH, PUSHA(D), ENTER,
 LEAVE

- Команды преобразования данных
 - Знаковое расширение
 - CBW, CWDE, CDQE, CWD, CDQ, CQO
 - Извлечение знаковой маски
 - MOVMSKPS, MOVMSKPD
 - Трансляция
 - XLAT
 - ASCII и BCD
 - AAA, AAD, AAM, AAS
 - ODAA, DAS
 - Порядок байтов
 - BSWAP

- Команды загрузки сегментных регистров
 - LDS, LES, LFS, LGS, LSS
 - MOV
 - POP
- Команда загрузки эффективного адреса
 - LEA

- Арифметические команды
 - Сложение и вычитание
 - ADC, ADD, SBB, SUB, NEG
 - Умножение и деление
 - MUL, IMUL, DIV, IDIV
 - Инкремент и декремент
 - DEC, INC
- Команды сдвига и вращения
 - Вращение
 - o RCL, RCR, ROL, ROR
 - Сдвиг
 - SAL, SAR, SHL, SHR, SHLD, SHRD

- Команды сравнения и тестирования
 - Сравнение
 - CMP
 - Тестирование
 - TEST
 - Сканирование битов
 - BSF, BSR
 - Подсчёт битов
 - POPCNT, LZCNT
 - Тестирование битов
 - BT, BTC, BTR, BTS
 - Условная установка значения
 - SETcc
 - Проверка принадлежности диапазону
 - BOUND

- Логические команды
 - AND, OR, XOR, NOT
- Строковые команды
 - CMPSB, CMPSW, CMPSD, CMPSQ
 - SCAS, SCASB, SCASW, SCASD, SCASQ
 - MOVS, MOVSB, MOVSW, MOVSD, MOVSQ
 - LODS, LODSB, LODSW, LODSD, LODSQ
 - STOS, STOSB, STOSW, STOSD, STOSQ

- Команды передачи управления
 - Прыжок
 - JMP
 - Условный прыжок
 - Jcc, JCXZ, JECXZ, JRCXZ
 - Цикл
 - LOOP*cc*
 - Вызов подпрограммы
 - CALL
 - Возврат из подпрограммы
 - RET
 - Прерывания и исключения
 - INT, INTO, IRET, IRETD, IRETQ

- Команды работы с флагами
 - Стек
 - POPF, POPFD, POPFQ, PUSHF, PUSHFD, PUSHFQ
 - Установка и сброс
 - o CLC, CMC, STC, CLD, STD, CLI, STI
 - Загрузка и сохранение
 - LAHF, SAHF

- Команды ввода/вывода
 - Общий ввод/вывод
 - IN, OUT
 - Строковый ввод/вывод
 - INS, INSB, INSW, INSD
 - OUTS, OUTSB, OUTSW, OUTSD
- Семафорные команды
 - CMPXCHG, CMPXCHG8B, CMPXCHG16B
 - XADD
 - XCHG

- Команды запроса информации
 - CPUID
- Команды управления кешем
 - LFENCE, SFENCE, MFENCE
 - PREFETCHL, PREFETCHW
 - CLFLUSH
- Команда, которая ничего не делает
 - NOP
- Команды системных вызовов
 - SYSENTER, SYSEXIT
 - SYSCALL, SYSRET

Регистры ХММ

- 128-разрядные регистры из набора SSE, добавлено 8 новых.
 - XMM0, XMM1, XMM2, XMM3, XMM4, XMM5,
 XMM6, XMM7, XMM8, XMM9, XMM10,
 XMM11, XMM12, XMM13, XMM14, XMM15.
- Скалярные форматы данных:
 - беззнаковое целое: 1, 8, 16, 32, 64 или 128 разрядов;
 - число с плавающей точкой: 32 или 64 разряда.

Регистры ХММ

- Векторные форматы данных:
 - беззнаковые целые: 8 (16 шт.), 16 (8 шт.),
 32 (4 шт.) или 64 (2 шт.) разряда;
 - знаковые целые: 8 (16 шт.), 16 (8 шт.), 32
 (4 шт.) или 64 (2 шт.) разряда;
 - числа с плавающей точкой: одинарной точности (4 шт.) или двойной точности (2 шт.).

DOUBLE 1		DOUBLE 0	
SINGLE 3	SINGLE 2	SINGLE 1	SINGLE 0

Примеры команд

- MOVD XMM0, RAX
- MOVDQA XMM8, OWORD [RSI]
- MOVDQU OWORD [RDI], XMM8

• CVTDQ2PS XMM1, XMM0

- PADDD XMM1, XMM0
- PSADBW XMM1, XMM0

Наборы инструкций

- SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4a, SSE4.2
- Intel AVX, AVX2
- Intel AES
- Мелкие наборы инструкций

Режимы адресации

- Режим адресации способ кодирования операнда.
- Различные инструкции поддерживают различные режимы адресации.
- Режим адресации может описывать константу, регистр или данное в памяти.

- Адресация памяти:
 - сегментный регистр (есть умолчание);
 - регистр базы (опционально);
 - регистр *индекса* и *множитель* (опционально);
 - смещение (опционально).

- Формат инструкции:
 - ноль или более legacy-префиксов;
 - необязательный REX-префикс;
 - 1- или 2-байтовый код операции;
 - необязательный байт ModRM или пара байтов ModRM и SIB;
 - необязательное смещение;
 - необязательное значение операндаконстанты.

REX:

- имеет коды с 0х40 по 0х4F;
- заменяет однобайтовые кодировки INC и DEC;
- содержит четыре бита:
 - REX.W 64-разрядный размер операнда;
 - REX.R доп. разряд к полю ModRM reg;
 - REX.X доп. разряд к полю ModRM index;
 - REX.B доп. разряд к полю ModRM r/m.

ModRM и SIB:

- в совокупности задают 5 полей: mod, r/m, reg, index, scale;
- если при инструкции есть REX-префикс, поля r/m, reg, index дополняются соответствующим старшим разрядом;
- в x86-64 эти поля могут ссылаться на все 16 регистров общего назначения или XMM;
- в x86 эти поля могли ссылаться на 8 регистров общего назначения или XMM.

- В x86-64 разрешено использовать в качестве базы счётчик инструкций RIP.
- В качестве значения будет выступать адрес следующей инструкции, так как текущая уже была выбрана процессором.
- Пример:
 - MOV RAX, QWORD [RIP + 0×3078]

- Ключевые слова NASM.
 - ADD EAX, DWORD [REL foo]
 - ADD EAX, DWORD [ABS foo]
- Поведение по умолчанию.
 - DEFAULT ABS
 - DEFAULT REL
 - Автоматически не распространяется на память, адресуемую в сегментах FS и GS.

- Регистры SPL, BPL, SIL, DIL имеют те же номера, что и АН, СН, DH, BH.
- Если инструкция имеет REX-префикс, можно использовать только SPL, BPL, SIL, DIL; AH, CH, DH, BH недоступны.
- Наоборот, если инструкции не имеет REX-префикса, можно использовать только АН, СН, DH, BH; SPL, BPL, SIL, DIL недоступны.
- Пример:
 - СМР СН, BYTE [R8] недопустимо;
 - CMP CL, BYTE [R8] допустимо.

Режимы работы процессора

- Legacy режим
 - Реальный режим
 - Защищённый режим
 - Режим виртуального 8086
- Длинный режим
 - Режим совместимости
 - 64-разрядный режим
- Режим системного менеджмента

Режимы работы процессора

	64-разрядный режим	Режим совместимости
Адресация относительно RIP	+	_
Размер адреса	64	32
Размер операнда	32	32
Загрузка 64-битного числа с MOV	+	_
Поддержка V8086	_	_
Поддержка задач	_	-
64-битные виртуальные адреса	+	+
Сегменты	FS, GS	все
Дескрипторы	64-разрядные	64-разрядные

- System V AMD64
- Microsoft

- System V AMD64
 - Необходимо сохранять RBP, RBX, R12, R13, R14, R15.
 - При использовании инструкций ММХ требуется выполнить FEMMS.
 - Флаг DF должен быть сброшен.
 - Управляющие биты MXCSR и FPU сохраняет вызываемый.
 - Статусные биты MXCSR и FPU сохраняет вызывающий.

- System V AMD64
 - Диаграмма стека при вызове:

Адрес	Содержимое	Фрейм	
RBP + 8 <i>n</i> + 16	Параметр в памяти <i>п</i>		
		Предыдущий	
RBP + 16	Параметр в памяти 0		
RBP + 8	Адрес возврата	Тоюший	
RBP	Предыдущее значение RBP		
RBP - 8	Не определено		
		Текущий	
RSP	(переменный размер)		
RSP - 128	Красная зона		

- System V AMD64
 - Для передачи целочисленных параметров могут использоваться регистры:
 - o RDI, RSI, RDX, RCX, R8, R9.
 - Для передачи SSE-параметров могут использоваться регистры:
 - XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7.
 - Два последовательных SSE-параметра могут быть упакованы в один регистр.
 - Все остальные параметры передаются через стек.

- System V AMD64
 - Возврат целых чисел:
 - RAX и RDX.
 - Возврат SSE-значений:
 - XMM0 и XMM1.
 - Два последовательных SSE-значения могут быть упакованы в один регистр.
 - Возврат FPU-значений:
 - ST(0) (ST(1) для комплексных чисел).
 - Два последовательных FPU-значения могут быть упакованы в один регистр.
 - Все остальные значения записываются в область памяти, передаваемую в качестве неявного параметра 0 (RDI); на выходе RAX := RDI.

System V AMD64

typedef struct { int a, b; double d; } structparm;

GPR		FPR		Стек	
RDI:	е	XMM0:	s.d	0:	ld
RSI:	f	XMM1:	m	16:	j
RDX:	s.a, s.b	XMM2:	у	24:	k
RCX:	g	XMM3:	n		
R8:	h				
R9:	i				

Microsoft

- Необходимо сохранять RBP, RBX, RSI, RDI, R12, R13, R14, R15, XMM6..XMM15.
- Флаг DF должен быть сброшен.
- Управляющие биты MXCSR и FPU сохраняет вызываемый.
- Статусные биты MXCSR и FPU сохраняет вызывающий.

Microsoft

- Стек содержит место для локальных переменных и сохранённых регистров.
- Стек содержит место для сохранения указателя фрейма.
- Стек содержит место для alloca().
- Стек содержит место для параметров, переданных в функцию.
- Стек содержит место для параметров, передаваемых из функции.

Microsoft

- Для передачи целочисленных параметров могут использоваться регистры:
 - RCX, RDX, R8, R9.
- Для передачи FP-параметров могут использоваться регистры:
 - XMM0, XMM1, XMM2, XMM3.
- Все остальные параметры передаются через стек.

- Microsoft
 - func1(float a, double b, float c, double d, float e)
 - XMM0 (a), XMM1 (b), XMM2 (c), XMM3 (d), stack (e)
 - func2(__m64 a, __m128 b, struct c, float d)
 - RCX (a), RDX (&b), R8 (&c), XMM3 (d)

Заключение

- Архитектура x86-64 эволюционный путь развития x86.
- Новые возможности добавлены с максимальным сохранением обратной совместимости.
- Убраны некоторые пережитки с 80-х годов: BCD-арифметика, сегменты, аппаратная поддержка задач и т. д.
- Наведён относительный порядок в наборе инструкций.

Заключение

- Появляющиеся вновь расширения набора инструкций нарушают порядок.
- Различные механизмы виртуализации у Intel, AMD и VIA не совместимы между собой.
- Набор инструкций AVX меняет модель программирования для SSE.
- Очень сложные инструкции (AES).